Buildings' Energy Efficiency and the Probability of Mortgage Default: The Dutch Case

Loriana Pelizzon

Monica Billio Michele Costola Max Riedel

FEMI Bauhaus 7th Edition

June 18, 2021

Introduction ●0000000	Dataset 000000	Empirical Analysis	Conclusions
The presented stu	udy		

• EU Horizon 2020 project

Energy efficient Mortgages Action Plan (EeMAP), grant agreement No 746205.

• Published in

Billio, M., Costola, M., Pelizzon, L., & Riedel, M. (2021), "Buildings' Energy Efficiency and the Probability of Mortgage Default: The Dutch Case". The Journal of Real Estate Finance and Economics, 1-32.

Introduction	Dataset	Empirical Analysis	Conclusions
0●000000	000000	00000	
Motivations			

- Buildings account for 40% of EU energy use and it is predicted that 75-90% of the building stock in the EU will continue to stand in 2050.
- The improvement of buildings' energy efficiency (EE) is among top priority measures that can help meet EU's commitment to reduce energy consumption and greenhouse gas emissions.
- From the perspective of mortgage lenders and investors, investment in building performance improvements seems to be an **attractive market segment**.

- Homebuyers recognize the contributory value of increased energy efficiency requiring:
 - larger discount for less energy efficient dwellings;
 - energy certifications into the property value.
- While the positive relation between EE and sales prices is well documented, it is less obvious if EE has any effect on the borrower's credit risk.

Introduction 000●0000	Dataset 000000	Empirical Analysis	Conclusions
Research Questio	ns		

- This provides a challenging research environment for the questions at hand:
 - What is the relation between buildings' energy efficiency and mortgage default risk?
 - ② Does the inclusion of the mortgage-specific attribute "energy efficient" or "green" into the lender's scoring model provide an additional value?
 - **3** What is the *economic mechanism* behind this relationship?
- The answer to these questions has the potential to unlock benefits for borrowers, lenders and investors.

Introduction	Dataset 000000	Empirical Analysis	Conclusions
Aim of the paper			

- We investigate the relation between a building's **energy efficiency** and the probability of **mortgage default**.
 - loan-level data of the **Dutch mortgage market** (residential buildings) issued on more than 120,000 dwellings (European DataWarehouse);
 - energy efficiency ratings are assigned by the Netherlands Enterprise Agency (RVO).
- We employ the Logistic regression and the extended Cox model to test if energy efficiency is negatively related with the default of the borrower.
- We test if results hold for a battery of robustness checks.

Introduction	Dataset 000000	Empirical Analysis 00000	Conclusions
Background on L	oan Pricing		

- The borrower's **probability of default** (PD) is usually assessed through the use of **credit scores**.
- Use of statistical model that maps an applicant's characteristics (financial and demographic information)
- Credit scoring methods are continuously refined, either by introducing **new models** or by adding **new variables** or **characteristics**.
- New studies has investigated if the inclusion of the mortgage-specific attribute "energy-efficient" or "green" in the lender's scoring model adds value.

Some studies have been conducted on this topic.

- Kaza et al. (2014) show that ENERGY STAR-rated houses in US are associated with a significant reduction of default.
- An and Pivo (2020) find that ENERGY STAR or LEED labelled US commercial buildings are 34% less likely to default.
- Guin and Korhonen (2020) show that UK mortgages against energy-efficient properties are less frequently in payment arrears.
- The EeDaPP project (2020) provides evidence of a negative relationship between energy efficiency and the probability of default for a portfolio of Italian residential mortgages.

There are three potential channels that might drive the negative EE-PD relation:

- personal characteristics of the borrowers captured by the choice of an EE building (e.g., environmental consciousness);
- improvements in building performance that help free up a borrower's disposable income through lower utility bills and thus reduce default risk;
- **3** the positive effect on the **dwelling value** and thus on the loan-to-value ratio (LTV), which lowers default risk.

Introduction 00000000	Dataset ●○○○○○	Empirical Analysis	Conclusions
The Dutch data	base		

- The period is from January 2014 to May 2018 (Netherlands).
- The type of borrower is *individual* and the primary income is between EUR 20,000 and 1,000,000.
- The property type is residential, detached/semi-detached house, apartment, or terraced house.
- The building's occupancy type is restricted to owner-occupied.
- The construction year ranges between 1900 and 2016.
- We focus on fixed-interest rate mortgages and exclude repurchased ones.
- Finally, we require each individual borrower to be associated with exactly one building and vice versa.

- For the classification of buildings into different energy efficiency categories, we rely on the **Dutch energy performance** provided by the RVO.
- The **provisional EPC** indicates the energy performance of a reference building that was developed using **cadastral data** (i.e., area, date of construction, building type, quality of insulation of floors, roof and walls, and systems for heating, hot water, and renewable energy) of the Dutch residential building stock.
- A dwelling is considered **EE** if it has an **A or B rating**.

Introduction	Dataset	Empirical Analysis	Conclusions
00000000	○○●○○○	00000	
Controls variables	5		

We include as controls the variables that can exert an impact on the default probability (i.e., An and Pivo, 2015):

- mortgage variables: contemporaneous loan-to-value ratio (LTV), the debt service coverage ratio (DSCR), the debt-to-income ratio (DTI), and the Mortgage term.
- **building variables:** property type, geographical location, and building's age category (3 years, Underwood and Alshawi, 2000).

Introduction 00000000	Dataset ○○○●○○	Empirical Analysis	Conclusions
Controls variable	S		

- **borrower information:** total income (sum of primary and secondary income) and borrower age at origination of the earliest loan component.
- macroeconomic conditions: quarterly unemployment rate, the 10-year government bond yields, the monthly standard deviation of the 10-year bond yields, and the yield curve slope defined as the difference between 10- and 1-year EUR swap rates.
- fixed effects: NUTS 3 region and (origination and current) loan year.

Introduction 00000000	Dataset ○○○○○●	Empirical Analysis	Conclusions
Summary	statistics/2		

Rating distribution.			
Rating category	All	Defaulted	
A	14.88	0.25	
В	17.73	0.38	
С	27.22	0.48	
D	9.55	0.69	
Е	3.99	1.05	
F	11.23	0.71	
G	15.39	0.81	
Total	100	0.55	

Mortgage original balance.

- A common approach for investigating the relation between the information at the borrower-level and the probability of mortgage default is the **Logistic regression**.
- The probability distribution of Y is modelled as

$$\mathcal{P}(Y_i = 1 | \mathbf{x}_i) = \frac{\exp(\beta' \mathbf{x}_i)}{1 + \exp(\beta' \mathbf{x}_i)},$$
(1)

where Y_i to be equal to one if the mortgage has defaulted and zero otherwise.

• **Default:** 3 months in arrears on the mortgage payment.

- After controlling for the discussed risk drivers and controls, we find that **Energy Efficiency** (*EE_i*) is **negatively related** to the probability of **default** of a mortgage.
- There is a direct reduction in the probability of 39 bps.
- Results survive after a number of **robustness checks** (LTV, total income, DTI, borrower age and building age).
- We also test for association of **the degree of energy efficient** with probability of default (results are confirmed only for the classes A/B).

Introduction	Dataset	Empirical Analysis	Conclusions
00000000	000000	००●००	
Extended Cox	Model		

- Results are confirmed also in the extended Cox Model.
- We compute the time-to-default over a 20-year period for the two mortgages groups.
- The energy efficient mortgages survive for a longer period than their non-efficient counterparts.

Introduction	Dataset	Empirical Analysis	Conclusions
00000000	000000	०००●०	
Economic Mechai	nism		

- Results provide evidence that there exists a **negative correlation** between EE and the probability of residential mortgage default.
- In the following, we aim to investigate the economic mechanism.
- Borrowers' savings from energy usage should result in more income available in case of emergencies or unexpected events.
- If this is the case, mortgages on energy efficient houses will have **lower risks** relative to standard houses.
- Consequently, a lower default risk should be magnified for **lower income borrowers**.
- To disentangle the effect, we decompose the **EE** variable according to the **income group** of the borrower (low, medium, high).

- We find that the income group shows a decrease on the probability of default of **39 bps (high group)**, **45 bps (medium group)**, and **46 bps (low group)** relative to the non-efficient counterpart.
- Considering that the average default rate for the lowest group is 0.93%, the reduction in terms of default probability is economically significant and is half the average default probability for low-income borrowers.
- This suggests that energy efficiency better mitigates the default risk of borrowers with lower incomes.
- The economic channel is represented by **savings that come from reduced costs**, which have a greater relative impact on the borrower with less disposable income.

Introduction	Dataset	Empirical Analysis	Conclusions
00000000	000000		●000
Conclusions			

- This study identifies a relationship between building energy efficiency and mortgage default risk.
- We use a unique data set consisting of Dutch loan-level data supplemented with provisional building energy efficiency ratings.
- We exploit the panel structure of the dataset, the technological progress, and the non-simultaneous changes in energy efficiency ratings across construction years and building types.
- We employ two empirical methodologies and find that energy efficiency is negatively related with a borrower's likelihood of default on mortgage payments.

Introduction	Dataset	Empirical Analysis	Conclusions
00000000	000000	00000	0●00
Conclusions/2			

- The results hold after accounting for borrower, mortgage, and market control variables.
- A series of robustness checks confirms that the findings are not driven by any particular assumptions.
- As a consequence, the discriminatory power of a model using both the usual credit variables and the EE variable significantly exceeds models that only use the traditional credit variables.
- This suggests that EE ratings complement rather than substitute borrower credit information.
- The positive effect on the dwelling value and thus on the LTV, which lowers default risk, is accounted for by controlling for contemporaneous LTV.

Introduction	Dataset	Empirical Analysis	Conclusions
00000000	000000	00000	
Conclusions/3			

- We investigate whether there is evidence of any economic mechanism that mitigates the default risk of lower-income borrowers.
- The income channel from the logit regression shows that savings coming from reduced costs have a greater impact in relative terms on borrowers with less disposable income.
- In the Cox model, the economic channel is confirmed in the mitigation of the default risk for the average household.
- These aspects are not only crucial for shaping future energy policy, but also have implications for the risk management of European financial institutions (i.e., lower interest rates).
- The presented findings are a first step in understanding whether and to what extent energy efficiency plays a role in the European mortgage market.

Introduction

Dataset 000000 Empirical Analysis

Conclusions

Thank you.

The paper is open access

Billio, M., Costola, M., Pelizzon, L., & Riedel, M. (2021), "Buildings' Energy Efficiency and the Probability of Mortgage Default: The Dutch Case". The Journal of Real Estate Finance and Economics, 1-32.

